Substation: From the Outside Looking In.
Moderator

Ron Spataro
AVO Training Institute Marketing Manager
Send us your questions and comments during the presentation.
Today’s Presenter

- Greg Richmond
 AVO Training Specialist
A Second Look at a Substation Components and their Functions

- Small review of the first Substation webinar
- Substation layout
- Conductors
- Various types of Switches
- Surge Arrestors
- Battery Maintenance
- Capacitor Banks
- Transitions
- Terminations
- Importance of One-line diagrams
- Down and Dirty with testing
- Safety (of course)
Review of first webinar

- Types of power generating systems
 - Nuclear, Fossil, Hydro, Wind, and Solar
- Step and Touch Potential within a Substation
- Substation grounding grid
 - IEEE Std 80-2000 – Conductors and Connections
 - IEEE Std 837-1989 – Application and Testing
- Substation Types
 - Transmission, Sub-transmission, Distribution, and Residential
Review of first webinar

- Transformers
 - Step-up and Step-down
- Circuit Breakers
 - Air, Oil, Vacuum, SF6
- Instrument Transformers
 - Types and purpose
- Switchgear
- Safety within the Substation
Typical Substation Layout

- Single Bus System
- Single Section Bus System
- Double Bus System
- Double Breaker Bus System
- One and Half Bus System
- Transfer Bus System
- Ring Bus System
Single Bus System

- Most simple and cheapest design.
- All feeders and transformer bay are connected to one bus.
Single Section Bus System

- A little more advanced than a single bus due to the sectionalizing circuit breaker involved.
- Isolation and back feed is an advantage with this section.
Double Bus System

- Two identical bus bars are used in such a way that any outgoing or incoming feeder can be taken from any of the bus.
- Every feeder is connected to both of the buses in parallel through individual isolator.
Double Breaker Bus System

- Similar to double bus bar system.
- Two identical bus bars are used in such a way that any outgoing or incoming feeder can be taken from any of the bus.
One and a Half Bus System

- An improvement on the double breaker scheme to effect saving in the number of circuit breakers.
- For every two circuits only one spare breaker is provided.
Transfer Bus System

- Alternative of double bus system.
- With this bus, every feeder line is directly connected through an isolator to a second bus called transfer bus.
This system provides a double feed to each feeder circuit, opening one breaker under maintenance or otherwise does not affect supply to any feeder.
Conductors

- Simple: to carry electrical energy form one place to other.
- The choice of conductor depends on the cost and efficiency.
- Solid
- Stranded
- Copper
- Aluminum
Electrical Insulator must be used in electrical system to prevent unwanted flow of current to the earth from its supporting points.

3 Types
- Porcelain
- Glass
- Polymer
Insulators in use

- Pin Insulators
 - Usually used in power network up to 33 KV system.
 - Can be one part, two parts or three parts type, depending upon application voltage.
 - For 33KV two parts and for 66KV three parts pin insulator are generally used.
Suspension Insulators

- For higher voltage, beyond 33KV, it becomes wasteful to use pin insulator because size, weight of the insulator become heavier.
Insulators in use

- Strain Insulators
 - When there is a dead end or there is a sharp corner in transmission line, the line has to sustain a great tensile load of conductor or strain.
Insulators Ratings

<table>
<thead>
<tr>
<th>Rated System Voltage</th>
<th>Number of disc insulator used in strain type tension insulator string</th>
<th>Number of disc insulator used in suspension insulator string</th>
</tr>
</thead>
<tbody>
<tr>
<td>33KV</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>66KV</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>132KV</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>220KV</td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>
Various Switchers

- Gang operated
- Open air
- Interrupter type
 - Vacuum
 - SF6
Surge Arrestors

- Used to protect against over voltage transients caused by external or internal events
Battery Maintenance

- Used in a control house to provide backup power for controls in case of a blackout
Capacitor Banks

- Used to control the level of the voltage supplied to the customer by reducing or eliminating the voltage drop in the system caused by inductive reactive loads.
Terminations

- **Pothead**
 - Separates the “bunched up conductors”
 - Provides weather protection

- **Dead Front**
 - All connections are totally shielded.
 - Provides a higher level of protection from moisture and contamination

- **Live front**
 - Exposed live connections
 - Provides adequate weather protection based on class and material
Transitional structures

- Overhead
 - Concrete
 - Wooden
 - Steele

- Underground
 - Risers
 - Junction boxes
Towers
Importance of One-Line Diagrams

- Display the configuration of the components within the substation.
- Shows normal and abnormal conditions.
- Allow the technician to properly troubleshoot the system.
- Indicates which components needed to isolate and ground.
- Technicians need to be able to read and understand the diagram.
- Need to be Up-to-date!
Down and dirty with testing

- Testing all apparatus in the substation.
 - Manufactures Specifications
 - State and local standards
 - NETA
 - AVO offers training to test substation equipment.
Substation Safety

- Isolate and earth ground.
- Proper work permits and Authorization.
- Proper signage at the site.
- Authorized personnel only.
- Necessary testing of equipment.
- EH rated rubber soled shoes.
- Watches rings and shiny things.
- Tool and equipment accountability.
- Complacency!
Summary

- Small review of the first Substation webinar
- Substation layout
- Conductors
- Various types of Switches
- Surge Arrestors
- Battery Maintenance
- Capacitor Banks
- Transitions
- Terminations
- Importance of One-line diagrams
- Down and Dirty with testing
- Safety (of course)
Hands-On Substation Training

- Substation Maintenance I: 4.5 Days – 3.6 CEUs
- Substation Maintenance II: 4.5 Days – 3.6 CEUs
- Power Factor Testing: 3 Days – 2.4 CEUs
- Transformer Maintenance & Testing: 4.5 Days – 3.6 CEUs
- Advanced Transformer Maintenance & Testing: 4.5 Days – 3.6 CEUs
- Battery Maintenance & Testing: 4 Days – 3.2 CEUs
Save the Date for Our Next Webinar

Tuesday April 17, 2018 at 1pm – 2pm CDT

Title: "A Technicians Approach to Phase and Ground Directional Overcurrent Relaying"

Presented by: Dennis Moon
AVO Training Institute, AVO Senior Training Specialist
After more than 50 years, AVO Training remains a global leader in safety and maintenance training for the electrical industry. We deliver an engaging, hands-on experience for our clients in a professional, real-world environment.

We strive to provide industry relevant courses in a practical and flexible learning environment through an ongoing commitment to quality service, integrity, instruction, and client satisfaction.

Our goal is to convey practical job skills and career development for our clients and students by saving lives through a world-class learning experience.